A neuroligin-4 missense mutation associated with autism impairs neuroligin-4 folding and endoplasmic reticulum export.

نویسندگان

  • Chen Zhang
  • Jeff M Milunsky
  • Stephanie Newton
  • Jaewon Ko
  • Geping Zhao
  • Tom A Maher
  • Helen Tager-Flusberg
  • Marc F Bolliger
  • Alice S Carter
  • Antony A Boucard
  • Craig M Powell
  • Thomas C Südhof
چکیده

Neuroligins (NLs) are postsynaptic cell-adhesion molecules essential for normal synapse function. Mutations in neuroligin-4 (NL4) (gene symbol: NLGN4) have been reported in some patients with autism spectrum disorder (ASD) and other neurodevelopmental impairments. However, the low frequency of NL4 mutations and the limited information about the affected patients and the functional consequences of their mutations cast doubt on the causal role of NL4 mutations in these disorders. Here, we describe two brothers with classical ASD who carry a single amino-acid substitution in NL4 (R87W). This substitution was absent from the brothers' asymptomatic parents, suggesting that it arose in the maternal germ line. R87 is conserved in all NL isoforms, and the R87W substitution is not observed in control individuals. At the protein level, the R87W substitution impaired glycosylation processing of NL4 expressed in HEK293 and COS cells, destabilized NL4, caused NL4 retention in the endoplasmic reticulum in non-neuronal cells and neurons, and blocked NL4 transport to the cell surface. As a result, the R87W substitution inactivated the synapse-formation activity of NL4 and abolished the functional effect of NL4 on synapse strength. Viewed together, these observations suggest that a point mutation in NL4 can cause ASD by a loss-of-function mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Arg451Cys-neuroligin-3 mutation associated with autism reveals a defect in protein processing.

The neuroligins are a family of postsynaptic transmembrane proteins that associate with presynaptic partners, the beta-neurexins. Neurexins and neuroligins play a critical role in initiating formation and differentiation of synaptic junctions. A recent study reported that a mutation of neuroligin-3 (NL3), an X-linked gene, was found in siblings with autistic spectrum disorder in which two affec...

متن کامل

Perturbed Hippocampal Synaptic Inhibition and γ-Oscillations in a Neuroligin-4 Knockout Mouse Model of Autism

Loss-of-function mutations in the synaptic adhesion protein Neuroligin-4 are among the most common genetic abnormalities associated with autism spectrum disorders, but little is known about the function of Neuroligin-4 and the consequences of its loss. We assessed synaptic and network characteristics in Neuroligin-4 knockout mice, focusing on the hippocampus as a model brain region with a criti...

متن کامل

Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation

INTRODUCTION Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G4...

متن کامل

An autism-associated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus.

Neuroligins are evolutionarily conserved postsynaptic cell-adhesion molecules that function, at least in part, by forming trans-synaptic complexes with presynaptic neurexins. Different neuroligin isoforms perform diverse functions and exhibit distinct intracellular localizations, but contain similar cytoplasmic sequences whose role remains largely unknown. Here, we analysed the effect of a sing...

متن کامل

The association of GPR85 with PSD-95-neuroligin complex and autism spectrum disorder: a molecular analysis

BACKGROUND Autism spectrum disorder (ASD) has a complex genetic etiology. Some symptoms and mutated genes, including neuroligin (NLGN), neurexin (NRXN), and SH3 and multiple ankyrin repeat domains protein (SHANK), are shared by schizophrenia and ASD. Little is known about the molecular pathogenesis of ASD. One of the possible molecular pathogenesis is an imbalance of excitatory and inhibitory r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 29 35  شماره 

صفحات  -

تاریخ انتشار 2009